Object Detection Gaming Project in C++

Explanation:

  1. Include OpenCV Header:
    • #include <opencv2/opencv.hpp>: Includes the OpenCV core functionalities.
  2. Load Haar Cascade:
    • cv::CascadeClassifier faceCascade;: Creates an object to load and use Haar cascade classifiers.
    • faceCascade.load("haarcascade_frontalface_default.xml");: Loads the pre-trained Haar cascade for face detection. Ensure that the haarcascade_frontalface_default.xml file is available in your working directory or provide the correct path.
  3. Capture Video:
    • cv::VideoCapture cap(0);: Opens the default camera (usually the webcam).
    • cap >> frame;: Captures a frame from the video feed.
  4. Processing Frames:
    • Convert to Grayscale: cv::cvtColor(frame, gray, cv::COLOR_BGR2GRAY); converts the captured frame to grayscale as the face detection algorithm works on grayscale images.
    • Detect Faces: faceCascade.detectMultiScale(gray, faces, 1.1, 3, 0, cv::Size(30, 30)); detects faces and stores their locations in the faces vector.
  5. Draw Rectangles:
    • cv::rectangle(frame, face, cv::Scalar(255, 0, 0), 2); draws rectangles around detected faces in the frame using a blue color and a thickness of 2.
  6. Display the Frame:
    • cv::imshow("Object Detection", frame); displays the frame with detected faces.
  7. Exit Loop:
    • if (cv::waitKey(30) >= 0) { break; } waits for 30 milliseconds for a key press and exits the loop if any key is pressed.
  8. Cleanup:
    • cap.release(); releases the video capture object.
    • cv::destroyAllWindows(); closes all OpenCV windows.

Prerequisites:

  1. OpenCV Library: Ensure OpenCV is installed and properly configured with your C++ project.

Haar Cascade File: Ensure you have the Haar cascade file (haarcascade_frontalface_default.xml) available.

Compilation and Execution:

  • Compile with OpenCV:
 

  • Run the Program:

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top