| 
					 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76  | 
						#include <iostream> #include <vector> #include <unistd.h> // for sleep() const int WIDTH = 10; const int HEIGHT = 10; // Function to print the grid void printGrid(const std::vector<std::vector<int>>& grid) {     for (const auto& row : grid) {         for (int cell : row) {             std::cout << (cell ? '*' : '.') << ' ';         }         std::cout << std::endl;     } } // Function to get the number of alive neighbors int countAliveNeighbors(const std::vector<std::vector<int>>& grid, int x, int y) {     const int directions[8][2] = {         {-1, -1}, {-1, 0}, {-1, 1},         {0, -1},         {0, 1},         {1, -1}, {1, 0}, {1, 1}     };     int count = 0;     for (const auto& dir : directions) {         int nx = x + dir[0];         int ny = y + dir[1];         if (nx >= 0 && nx < WIDTH && ny >= 0 && ny < HEIGHT) {             count += grid[nx][ny];         }     }     return count; } // Function to update the grid based on Conway's rules void updateGrid(std::vector<std::vector<int>>& grid) {     std::vector<std::vector<int>> newGrid = grid;     for (int x = 0; x < WIDTH; ++x) {         for (int y = 0; y < HEIGHT; ++y) {             int aliveNeighbors = countAliveNeighbors(grid, x, y);             if (grid[x][y] == 1) {                 if (aliveNeighbors < 2 || aliveNeighbors > 3) {                     newGrid[x][y] = 0; // Cell dies                 }             } else {                 if (aliveNeighbors == 3) {                     newGrid[x][y] = 1; // Cell becomes alive                 }             }         }     }     grid = newGrid; } int main() {     // Initialize the grid with a glider pattern     std::vector<std::vector<int>> grid(HEIGHT, std::vector<int>(WIDTH, 0));     grid[1][2] = grid[2][3] = grid[3][1] = grid[3][2] = grid[3][3] = 1;     // Number of iterations     int iterations = 10;     // Simulation loop     for (int i = 0; i < iterations; ++i) {         std::cout << "Generation " << i + 1 << std::endl;         printGrid(grid);         updateGrid(grid);         sleep(1); // Pause for a second         std::cout << std::endl;     }     return 0; }  | 
					
Explanation:
- Constants:
WIDTHandHEIGHT: Dimensions of the grid.
 - printGrid Function:
- Prints the grid to the console, where 
*represents an alive cell and.represents a dead cell. 
 - Prints the grid to the console, where 
 - countAliveNeighbors Function:
- Calculates the  number of alive neighbors for a cell at position 
(x, y). It checks all eight possible directions around the cell. 
 - Calculates the  number of alive neighbors for a cell at position 
 - updateGrid Function:
- Creates a new grid based on Conway’s rules:
- An alive cell with fewer than 2 or more than 3 alive neighbors dies.
 - A dead cell with exactly 3 alive neighbors becomes alive.
 
 
 - Creates a new grid based on Conway’s rules:
 - main Function:
- Initializes a 10×10 grid with a glider pattern.
 - Runs the simulation for a specified number of iterations, updating and printing the grid each generation.
 - Uses 
sleep(1)to pause for one second between generations.
Compilation:
To compile the program, use:
1g++ game_of_life.cpp -o game_of_life
Run the program with:
1./game_of_life