| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 | #include <iostream> #include <vector> #include <climits> #include <queue> const int INF = INT_MAX; // Class to represent a graph class Graph { public:     Graph(int vertices) : adj(vertices, std::vector<std::pair<int, int>>()) {}     // Add an edge to the graph     void addEdge(int u, int v, int w) {         adj[u].emplace_back(v, w);         adj[v].emplace_back(u, w); // For undirected graph     }     // Function to perform Dijkstra's algorithm from a source vertex     std::vector<int> dijkstra(int src) {         int V = adj.size();         std::vector<int> dist(V, INF);         std::vector<bool> visited(V, false);         std::priority_queue<std::pair<int, int>, std::vector<std::pair<int, int>>, std::greater<>> pq;         dist[src] = 0;         pq.emplace(0, src);         while (!pq.empty()) {             int u = pq.top().second;             pq.pop();             if (visited[u]) continue;             visited[u] = true;             for (const auto& edge : adj[u]) {                 int v = edge.first;                 int weight = edge.second;                 if (!visited[v] && dist[u] + weight < dist[v]) {                     dist[v] = dist[u] + weight;                     pq.emplace(dist[v], v);                 }             }         }         return dist;     } private:     std::vector<std::vector<std::pair<int, int>>> adj; }; int main() {     int V = 5; // Number of vertices     Graph g(V);     // Adding edges (u, v, weight)     g.addEdge(0, 1, 10);     g.addEdge(0, 4, 3);     g.addEdge(1, 2, 2);     g.addEdge(1, 4, 4);     g.addEdge(2, 3, 9);     g.addEdge(3, 4, 7);     int src = 0; // Starting vertex     std::vector<int> distances = g.dijkstra(src);     std::cout << "Vertex\tDistance from Source\n";     for (int i = 0; i < distances.size(); ++i) {         std::cout << i << "\t\t" << (distances[i] == INF ? "INF" : std::to_string(distances[i])) << "\n";     }     return 0; } | 
Explanation
- Graph Class:
- Attributes:
- adj: Adjacency list representation of the graph. Each vertex has a list of pairs representing adjacent vertices and edge weights.
 
- Methods:
- addEdge(int u, int v, int w): Adds an undirected edge between vertices- uand- vwith weight- w.
- dijkstra(int src): Computes the shortest paths from source vertex- srcusing Dijkstra’s algorithm.
 
 
- Attributes:
- Dijkstra’s Algorithm:
- Purpose: Finds the shortest path from the source vertex to all other vertices in the graph.
- Data Structures:
- Priority Queue: Stores vertices to be processed, ordered by their current shortest distance.
- Distance Vector: Maintains the shortest distance from the source to each vertex.
- Visited Vector: Keeps track of vertices that have been processed.
 
- Algorithm:
- Initialize distances to all vertices as infinity, except the source vertex.
- Use a priority queue to explore vertices with the smallest known distance.
- Update distances based on the weights of the edges and the shortest paths found.
 
 
- Main Function:
- Graph Creation: Initializes a graph with a specified number of vertices and adds edges.
- Distance Calculation: Calls dijkstrato compute shortest paths from the source vertex.
- Result Display: Prints the shortest distance from the source vertex to each vertex.
 
Usage
- Routing Simulation: Demonstrates how to use Dijkstra’s algorithm for routing and finding shortest paths in a graph.
- Graph-Based Games: Useful for implementing pathfinding and routing features in graph-based or grid-based games.
