1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
#include <iostream> #include <vector> #include <climits> #include <queue> const int INF = INT_MAX; // Class to represent a graph class Graph { public: Graph(int vertices) : adj(vertices, std::vector<std::pair<int, int>>()) {} // Add an edge to the graph void addEdge(int u, int v, int w) { adj[u].emplace_back(v, w); adj[v].emplace_back(u, w); // For undirected graph } // Function to perform Dijkstra's algorithm from a source vertex std::vector<int> dijkstra(int src) { int V = adj.size(); std::vector<int> dist(V, INF); std::vector<bool> visited(V, false); std::priority_queue<std::pair<int, int>, std::vector<std::pair<int, int>>, std::greater<>> pq; dist[src] = 0; pq.emplace(0, src); while (!pq.empty()) { int u = pq.top().second; pq.pop(); if (visited[u]) continue; visited[u] = true; for (const auto& edge : adj[u]) { int v = edge.first; int weight = edge.second; if (!visited[v] && dist[u] + weight < dist[v]) { dist[v] = dist[u] + weight; pq.emplace(dist[v], v); } } } return dist; } private: std::vector<std::vector<std::pair<int, int>>> adj; }; int main() { int V = 5; // Number of vertices Graph g(V); // Adding edges (u, v, weight) g.addEdge(0, 1, 10); g.addEdge(0, 4, 3); g.addEdge(1, 2, 2); g.addEdge(1, 4, 4); g.addEdge(2, 3, 9); g.addEdge(3, 4, 7); int src = 0; // Starting vertex std::vector<int> distances = g.dijkstra(src); std::cout << "Vertex\tDistance from Source\n"; for (int i = 0; i < distances.size(); ++i) { std::cout << i << "\t\t" << (distances[i] == INF ? "INF" : std::to_string(distances[i])) << "\n"; } return 0; } |
Explanation
- Graph Class:
- Attributes:
adj
: Adjacency list representation of the graph. Each vertex has a list of pairs representing adjacent vertices and edge weights.
Advertisement - Methods:
addEdge(int u, int v, int w)
: Adds an undirected edge between verticesu
andv
with weightw
.dijkstra(int src)
: Computes the shortest paths from source vertexsrc
Advertisement
- Attributes:
- Dijkstra’s Algorithm:
- Purpose: Finds the shortest path from the source vertex to all other vertices in the graph.
- Data Structures:
- Priority Queue: Stores vertices to be processed, ordered by their current shortest distance.
- Distance Vector: Maintains the shortest distance from the source to each vertex.
- Visited Vector: Keeps track of vertices that have been processed.
- Algorithm:
- Initialize distances to all vertices as infinity, except the source vertex.
- Use a priority queue to explore vertices with the smallest known distance.
- Update distances based on the weights of the edges and the shortest paths found.
- Main Function:
- Graph Creation: Initializes a graph with a specified number of vertices and adds edges.
- Distance Calculation: Calls
dijkstra
to compute shortest paths from the source vertex. - Result Display: Prints the shortest distance from the source vertex to each vertex.
Advertisement
Usage
- Routing Simulation: Demonstrates how to use Dijkstra’s algorithm for routing and finding shortest paths in a graph.
- Graph-Based Games: Useful for implementing pathfinding and routing features in graph-based or grid-based games.